Connectto Google Sheets, Postgres, Doc2markdown MCP Servers

Create powerful AI workflows by connecting multiple MCP servers including Google Sheets, Postgres, Doc2markdown for enhanced automation capabilities in Klavis AI.

Google Sheets icon

Google Sheets

featured

Google Sheets is a web-based spreadsheet application that allows users to create, edit, and collaborate on spreadsheets online

Available Tools:

  • google_sheets_create_spreadsheet
  • google_sheets_get_spreadsheet
  • google_sheets_write_to_cell
  • +1 more tools
Postgres icon

Postgres

featured

PostgreSQL is a powerful, open source object-relational database system

Available Tools:

  • query
Doc2markdown icon

Doc2markdown

featured

Convert any file to markdown using markitdown

Available Tools:

  • convert_document_to_markdown

Quick Setup Guide

Follow these steps to connect Together AI to these MCP servers

1

Create Your Account

Sign up for KlavisAI to access our MCP server management platform.

2

Configure Connections

Add your desired MCP servers to Together AI and configure authentication settings.

3

Test & Deploy

Verify your connections work correctly and start using your enhanced AI capabilities.

Together AI + KlavisAI Integration Snippets

import os
import json
from together import Together
from klavis import Klavis
from klavis.types import McpServerName, ConnectionType, ToolFormat

# Initialize clients
together_client = Together(api_key=os.getenv("TOGETHER_API_KEY"))
klavis_client = Klavis(api_key=os.getenv("KLAVIS_API_KEY"))

google_sheets_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.GOOGLE_SHEETS,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

postgres_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.POSTGRES,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

doc2markdown_mcp_instance = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.DOC2MARKDOWN,
    user_id="1234",
    platform_name="Klavis",
    connection_type=ConnectionType.STREAMABLE_HTTP,
)

# Get all MCP tools
google_sheets_tools = klavis_client.mcp_server.list_tools(
    server_url=google_sheets_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
postgres_tools = klavis_client.mcp_server.list_tools(
    server_url=postgres_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)
doc2markdown_tools = klavis_client.mcp_server.list_tools(
    server_url=doc2markdown_mcp_instance.server_url,
    connection_type=ConnectionType.STREAMABLE_HTTP,
    format=ToolFormat.OPENAI,
)

# Combine all tools
all_tools = []
all_tools.extend(google_sheets_tools.tools)
all_tools.extend(postgres_tools.tools)
all_tools.extend(doc2markdown_tools.tools)

messages = [
    {"role": "system", "content": "You are a helpful AI assistant with access to multiple data sources."},
    {"role": "user", "content": user_message}
]

response = together_client.chat.completions.create(
    model="meta-llama/Llama-2-70b-chat-hf",
    messages=messages,
    tools=all_tools
)

Frequently Asked Questions

Everything you need to know about connecting to these MCP servers

Ready to Get Started?

Join developers who are already using KlavisAI to power their Together AI applications with these MCP servers.

Start For Free